Efficiently Mining High Utility Sequential Patterns in Static and Streaming Data

نویسندگان

  • Morteza ZIHAYAT
  • Cheng-Wei WU
  • Vincent S. TSENG
چکیده

High utility sequential pattern (HUSP) mining has emerged as a novel topic in data mining. Although some preliminary works have been conducted on this topic, they incur the problem of producing a large search space for high utility sequential patterns. In addition, they mainly focus on mining HUSPs in static databases and do not take streaming data into account, where unbounded data come continuously and often at a high speed. To efficiently deal with both problems, we propose a novel framework for mining high utility sequential patterns over static and streaming databases. In this regard, two efficient data structures named ItemUtilLists (Item Utility Lists) and HUSP-Tree (High Utility Sequential Pattern Tree) are proposed to maintain essential information for mining HUSPs in both offline and online fashions. In addition, a novel utility model called SequenceSuffix Utility is proposed for effectively pruning the search space in HUSP mining. We propose an algorithm named HUSP-Miner (High Utility Sequential Pattern Miner) to find HUSPs in static databases efficiently. Then, a one-pass algorithm named HUSP-Stream (High Utility Sequential Pattern mining over Data Streams) is proposed to incrementally update ItemUtilLists and HUSP-Tree online and find HUSPs over data streams. To the best of our knowledge, HUSP-Stream is the first method to find HUSPs over data streams. Experimental results on both real and synthetic datasets show that HUSP-Miner outperforms the compared algorithms substantially in terms of execution time, memory usage and number of generated candidates. The experiments also demonstrate impressive performance of HUSPStream to update the data structures and discover HUSPs over data streams.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Memory-Bounded High Utility Sequential Pattern Mining over Data Streams

Mining high utility sequential patterns (HUSPs) has emerged as an important topic in data mining. However, the existing studies on this topic focus on static data and do not consider streaming data. Streaming data are fast changing, continuously generated and unbounded in amount. Such data can easily exhaust computer resources (e.g., memory) unless proper resource-aware mining is performed. In ...

متن کامل

Efficient Mining of High Utility Sequential Patterns Over Data Streams

High utility sequential pattern mining has emerged as an important topic in data mining. Although several preliminary works have been conducted on this topic, the existing studies mainly focus on mining high utility sequential patterns (HUSPs) in static databases and do not consider the streaming data. Mining HUSPs over data streams is very desirable for many applications. However, addressing t...

متن کامل

High Fuzzy Utility Based Frequent Patterns Mining Approach for Mobile Web Services Sequences

Nowadays high fuzzy utility based pattern mining is an emerging topic in data mining. It refers to discover all patterns having a high utility meeting a user-specified minimum high utility threshold. It comprises extracting patterns which are highly accessed in mobile web service sequences. Different from the traditional fuzzy approach, high fuzzy utility mining considers not only counts of mob...

متن کامل

A Single-scan Algorithm for Mining Sequential Patterns from Data Streams

Sequential pattern mining (SPAM) is one of the most interesting research issues of data mining. In this paper, a new research problem of mining data streams for sequential patterns is defined. A data stream is an unbound sequence of data elements arriving at a rapid rate. Based on the characteristics of data streams, the problem complexity of mining data streams for sequential patterns is more ...

متن کامل

A New Algorithm for High Average-utility Itemset Mining

High utility itemset mining (HUIM) is a new emerging field in data mining which has gained growing interest due to its various applications. The goal of this problem is to discover all itemsets whose utility exceeds minimum threshold. The basic HUIM problem does not consider length of itemsets in its utility measurement and utility values tend to become higher for itemsets containing more items...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016